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tatistically Speaking

he Problem of Multiple Testing

ristin L. Sainani, PhD
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alse-positive results that arise as the result of chance are common in the medical literature
1-3]. By chance, every study sample will have slight imbalances that don’t reflect the whole
opulation. If researchers look at enough characteristics of a given sample, they are bound
o discover these quirks and conclude (mistakenly) that they have significance for the whole
opulation. This is the problem of multiple testing—the more tests you run on a sample, the
reater the likelihood of a chance finding. This article will formally describe the problem of
ultiple testing and give readers tools for spotting chance findings in the literature.

ULTIPLE TESTING: WHAT IS IT?

athematically, the problem of multiple testing can be explained as follows: every statistical
est comes with an inherent false positive, or type I error, rate—which is equal to the

threshold set for statistical significance, generally .05.
However, this is just the error rate for one test; when
more than one test is run, the overall type I error rate is
much greater than 5%. For example, if one runs 100
independent statistical tests where it is known no effects
exist, the chance of getting at least one false positive (ie, at

east one P value less than .05) is 99.4% (see In-Depth sidebar for how this is calculated), and 5
alse positives are expected (because approximately 1 in 20 tests will yield a false positive).

One should not extrapolate from this discussion that 1 in 20 significant findings in the
iterature are chance findings. A type I error can only occur if the null hypothesis is

true—that is, if the effect being tested is not real. There-
fore, if researchers only ever tested real effects, there
would be no chance findings in the literature. The prob-
ability that a given significant result is a false positive also
depends on the study power (the lower the study power,
the more likely it is a false positive). Thus, it is impossible
to accurately estimate what proportion of “significant”
results (P � .05) in the literature are actually chance
findings. On the basis of varying assumptions, research-

rs have estimated this proportion to be anywhere from 1.5% to 96.1%, with approximately
0% being the most likely value [2].

HAT ARE SOURCES OF MULTIPLE TESTING?

here are many sources of multiple testing (Table 1). Besides the most obvious sources—
omparing multiple groups or examining multiple outcomes—other less obvious sources
nclude subgroup analyses, variable definitions, repeated measures, and interim analyses.
ome of these sources are not always readily apparent in a published article. For example, if
data analyst tries 3 different definitions/cut-points for “moderate drinking” in regression

nalyses, that person has run 3 statistical tests. However, this data exploration may be
idden from the reader.

NATOMY OF A CHANCE FINDING

ome experiments have been conducted purely to illustrate the problem of multiple testing.

Type I error. In hypothesis test-
ing, this is a false-positive error.
The researcher concludes that an
effect exists when it does not.

Null hypothesis. The hypothesis
of no effect—for example, the
hypothesis that 2 variables are
unrelated or that 2 groups don’t
differ. A type I error occurs when
the null hypothesis is erroneously
rejected.
n these examples, the researchers knew ahead of time that the null hypothesis was true, but
D
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hey conducted multiple statistical tests anyway to demon-
trate how frequently false positives arise.

In a 1980 study in Circulation, researchers randomly as-
igned 1073 heart disease patients to two groups, group 1
nd group 2, but they treated the patients exactly the same
4]. Not surprisingly, they found that survival times were
imilar between the 2 groups. However, when they divided
he patients into 18 subgroups based on prognostic factors,
hey found that in a particular subgroup (those with 3-vessel
isease and an abnormal left ventricular contraction), group
patients had a survival advantage (P � .025). It seems

urprising that a false positive could crop up so easily, but in
act the probability of this happening was high because the
uthors ran 19 statistical comparisons. (It is difficult to cal-
ulate the exact probability because the subgroups overlap,
ut the probability would be 62% if 19 independent compar-

sons were run.) The lesson: if one divides the data up in
nough different ways, it is easy to find a subgroup with a
hance imbalance in survival.

As another example, take an informal experiment that I
id in an introductory statistics class. I divided the class into
groups based on whether the students were born on an odd
r even day and then asked them to provide data on 28
ariables about themselves (such as on their likes, dislikes,

able 1. Sources of multiple testing

Source

ultiple outcomes A coh
and

ultiple predictors An ob
rand

ubgroup analyses A rand
subg

ultiple definitions for the exposures and outcomes An ob
defin
day,

ultiple time points for the outcome (repeated
measures)

A stud
mont

ultiple looks at the data during sequential interim
monitoring

A 2-ye
evalu

IN-DEPTH: HOW IS THE PROBABILITY OF
CALCULATED?

If 100 statistical tests are run when: (1) there are no real eff
of at least one false positive (that is, one P value under .05

For 1 test:
If there are no real effects, the probability of a false pos

positive does not occur is 1 - .05 � .95.
For 100 tests:
If the tests are independent, meaning they are unrelated

in 100 tests is: .95100 � .006. Thus, the probability that at
Note that this calculation requires two key assumption
1. The null hypothesis is true for all 100 effects being t
2. The effects being tested are completely independent
In many cases where multiple tests are run in the litera
and 18 mo
nd eating habits). When I compared these 28 variables
etween the 2 groups, I found 2 significant differences (P �

02, P � .04). Does this mean that being born on an odd or
ven day is really associated with these variables? Of course
ot; these are clearly chance findings. When no effects exist,
values will randomly take on any value from 0 to 1 with

qual probability, meaning that when you run 28 tests a few
ill fall in the 0 to .05 range just by chance. Figure 1 shows

he 28 P values from the tests that I ran—in this context it is
asy to see that the 2 “significant” P values are not very
nteresting or impressive.

It’s impossible to know for sure whether a particular
significant” finding in the literature is a chance finding—but
he aforementioned studies illustrate a pattern that should
aise a high level of suspicion. When a large number of
tatistical tests are run and just a few findings of modest
ignificance arise (.01� P � .05), chance should be consid-
red as a likely explanation.

For example, consider a paper in the Archives of Internal
edicine in which the authors examined the relationship

etween caffeine consumption and breast cancer [5]. The
uthors found no overall association, but they reported a few
ignificant/near-significant findings (P � .08, P � .02, P �
02) from subgroup analyses, which they concluded war-

Example

dy looking at the incidence of breast cancer, colon cancer,
ancer
ional study with 40 dietary predictors or a trial with 4
ion groups
d trial that tests the efficacy of an intervention in 20

based on prognostic factors
ional study where the data analyst tests multiple different
or “moderate drinking” (eg, 5 drinks per week, 1 drink per
inks per day, etc.)
re a walking test is administered at 1 month, 3 months, 6
d 1 year
domized trial where the efficacy of the treatment is
by a Data Safety and Monitoring Board at 6 months, 1 year,

EAST ONE FALSE POSITIVE

nd (2) these tests are independent, what is the probability

rising in a given test is .05. So, the probability that a false

ch other, then the probability that no false positives occur
ne false positive does occur is 1 - .006 � .994, or 99.4%.

one or both of these assumptions may not be true.
ort stu
lung c
servat
omizat

omize
roups
servat
itions f
1-2 dr
y whe
hs, an
ar ran
ated
AT L

ects; a
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itive a
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.
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1100 Sainani THE PROBLEM OF MULTIPLE TESTING
anted further investigation (specifically, coffee intake was
inked to increased risk in those with benign breast disease,
nd caffeine intake was linked to increased risk of estrogen/
rogesterone negative tumors and tumors larger than 2 cm).
he authors were appropriately cautious in their conclu-
ions, but I would go one step further and assert that these
ndings are most likely the result of chance.

The authors ran 50 tests examining the relationship of
reast cancer with caffeine, coffee, decaffeinated coffee, and
ea intakes overall and in multiple subgroups on the basis of
istory of benign breast disease, body mass index (�25,
25), menopausal status, hormone use (ever/never), hor-
one receptor status, tumor size (� or �2 cm), lymph node
etastasis (yes/no), and histologic grade (well/moderate/
oor). Figure 2 shows the distribution of the resulting 50 P
alues. Four P values were less than .10, which is consistent
ith chance. (In addition to the 3 P values mentioned previ-
usly, decaffeinated coffee was linked to protection against

breast cancer in post-
menopausal never hor-
mone users, P � .02; in-
terestingly, the authors

igure 1. The distribution of the P values resulting from 28 stati
nd those born on even days. There is an equal likelihood of g
% will come out to be less than .05. Indeed, 2 tests of 28 gav

Effect size: A measure of the
magnitude of an observed ef-
fect—for example, how big the
did not comment on this cdifference between groups is.
nding.) The effect sizes
re also consistent with
hance: risk ratios were
lose to the null value of
.0 (ranging from 0.67 to
.79), indicated protec-
ion (�1.0) about as often
arm (�1.0), and showed
o consistent dose–re-
ponse pattern across increasing levels of consumption. It is
asy to come up with a plausible sounding biological story to
xplain why caffeine is important in women with benign
reast disease and for certain types of tumors, but, in fact, the
ost likely explanation for the findings is chance alone.

ULTIPLE TESTING: WHAT TO LOOK FOR

n judging whether a given finding in the literature is likely to
e to the result of chance, readers should consider whether
he analyses were hypothesis-driven or exploratory, how
any tests were run, the size of the P values, the pattern of

ffect sizes, and whether P values were adjusted for multiple

ests comparing 2 groups of students: those born on odd days
P values anywhere from 0 to 1, meaning that approximately

tistically significant” results (P � .05).

Risk ratio: A measure of relative
risk formed by dividing the risk in
one group by the risk in a refer-
ence group. Values of 1.0 indi-
cate no difference in risk; values
�1.0 indicate increased risk; and
values � 1.0 indicate decreased
risk.
stical t
etting

e “sta
omparisons (Table 2).
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re the Analyses Hypothesis Driven or
ypothesis Generating?

hen evaluating the literature, readers should distinguish
etween hypothesis-driven analyses and hypothesis-gener-

ating or exploratory an-
alyses. When researchers
specify a priori (before
the study is conducted) a
small number of hypothe-
ses that they are planning

o test, including clear definitions of the predictors and
utcomes, this is hypothesis-driven research. This approach
imits the number of statistical tests run, thus controlling the
verall type I error. In contrast, when researchers test a large
umber of hypotheses after the data have been collected—
ssentially searching through the data to find associations—
his is hypothesis-generating, or exploratory, research, and
he type I error rate is likely to be high. This is not to say

mining the data in this
manner is wrong or bad.
Often researchers collect
large amounts of data in

igure 2. The distribution of P values from 50 statistical tests ex
nd breast cancer [5]. P values were taken from tests for trend
as presented (Tables 2-5 from Ishitani, et al [5]). Four P value

Hypothesis-driven analyses.
When researchers run a limited
number of prespecified statistical
tests.

Exploratory analyses. When re-
searchers run a large number of
unplanned statistical tests look-
the course of a focused sing for patterns in their data.
tudy, and it would be a waste not to examine these data. But
statistically significant” results that come out of such an
xploratory analysis should be regarded with a greater level
f scrutiny.

For example, if a randomized trial tests the effect of a drug
ersus a placebo in stroke patients, the P values associated
ith the primary hypothesis (the difference in recovery be-

ween drug-treated and placebo-treated patients) can be
aken at face value. However, if in that same study, the
esearchers explored the associations between a large num-
er of nutrition variables (that happened to be collected on a
ood frequency questionnaire as part of the study) and stroke
ecovery, then these results should be clearly identified as
xploratory and interpreted cautiously.

ow Many Tests Were Run?

eaders can count the number of tests reported in a paper
nd multiply it by .05 to get a rough idea of the number of P
alues less than .05 that would be expected to arise by chance
lone (if no effects being tested were real). Of course, the data
resented in a paper usually represent a subset of all the

g the relationship between caffeine, coffee, and tea intakes
nd from the most adjusted model when more than one model
elow .10, which would be expected due to chance.
aminin
only a
s fall b
tatistical tests run (particularly for exploratory analyses), so
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1102 Sainani THE PROBLEM OF MULTIPLE TESTING
keep in mind that the
number of tests run may
be much larger than the
number of tests reported.

There are a number of
statistical approaches avail-
able that can reduce the
number of tests being run.
Global tests such as analy-
sis of variance (ANOVA)

nd repeated-measures ANOVA compare multiple groups or
ultiple time points simultaneously, thus generating only one P

alue. For example, rather than running 3 t tests (and thus
nflating the type I error) to compare the means in 3 groups, one
an instead conduct a single ANOVA analysis that compares all

three means at once. Statis-
ticians also create compos-
ite outcomes to reduce the
number of outcomes being
tested.

ow Significant Is the P Value?

he strength of the evidence against the null hypothesis
ncreases with smaller P values. Therefore, a P value of �.001
s less likely to be a chance finding than a P value of �.05. In
ne paper, researchers estimated—based on certain assump-
ions about the literature—that when a significance threshold
f P � .05 is used, about 1 in 2 significant findings in the
iterature will be the result of chance, but when a threshold of
� .001 is used, only 1 in 56 significant findings will be the

esult of chance [2].

hat Is the Pattern of Effect Sizes?

values do not tell the whole story, and readers should always
lso consider effect sizes. If a particular association (eg, caffeine
nd breast cancer) has been evaluated across multiple different
ests, the pattern of the resulting effect sizes can be informative.
eal effects may be missed if a study has low statistical power.
herefore, if there is a consistent pattern of effect sizes, for
xample, if all the risk ratios are in the direction of harm (�1.0),

able 2. Summary of factors that may be indicative of chanc

. Analyses are exploratory. The
a

. Many tests have been performed, but only
a few P values are “significant.”

If th
ar
ru

. The “significant” P values are modest in size. The
Ac
po
�

. The pattern of effect sizes is inconsistent. If th
in
be

. The P values are not adjusted for multiple Ad

Global test. A statistical test that
compares multiple groups simul-
taneously, generating only one P
value. For example, ANOVA tests
the global null hypothesis that
several groups’ means are equal.
If the null hypothesis is rejected,
this indicates that at least one
mean differs.

Composite outcome. Where
multiple endpoints are combined
into a single outcome measure.
comparisons false-po
ut only a few results
chieve moderate statistical
ignificance, one may sus-
ect that low statistical
ower is a factor rather than
hance. On the other hand,
f the effect sizes show no
onsistent pattern—as in
he caffeine/breast cancer
tudy mentioned previ-
usly—then chance may be
more likely explanation.

as the P Value Been Adjusted for
ultiple Comparisons?

tatisticians have devised ways to “adjust” P values or confidence
ntervals to account for the number of tests run. The basic idea is
o preserve the overall type I error rate at .05 by lowering the
hreshold for statistical significance (to lower than �.05) or
idening the confidence interval. For example, the simplest

pproach is the Bonferroni correction: When k tests are run,
nly P values under .05/k are deemed significant (eg, if 5 tests
re run, only P values under .01 are reported as significant).
lthough easy to understand and conduct, the Bonferroni cor-
ection is overly conservative—it represents a “worst-case” sce-
ario where all the tests being conducted are completely inde-
endent (which is usually not the case). Thus, many less
onservative (but more mathematically intensive) methods have
een developed. Applying these requires statistical software
nd/or consultation with a statistician.

Formal corrections for multiple comparisons are most
ften used in the context of hypothesis-driven research. For
xample, if the authors plan to look at multiple outcomes,
ook at a limited number of planned subgroups, or engage in
nterim analyses, they may build in a correction for these

ultiple comparisons. For exploratory analyses, formal ad-
ustment of P values (and confidence intervals) is usually
mpractical. In these contexts, it is difficult to precisely quan-
ify the total number of tests run and their interrelatedness;
nd, because of the large number of tests run, the adjusted
hreshold for statistical significance may be so small that it

ings

ors have mined the data for associations rather than testing
number of a priori hypotheses.

re no associations present, .05*k significant P values (P � .05)
ected to arise just by chance, where k is the number of tests

r a P value is to .05, the more likely it is a chance finding.
ng to one estimate (2), about 1 in 2 P values �.05 is a false
1 in 6 P values �.01 is a false positive, and 1 in 56 P values

s a false positive.
e association has been evaluated in multiple ways, an

ent pattern of effect sizes (eg, risk ratios both above and
) is indicative of chance.
nt for multiple comparisons can help control the study-wide

Statistical power. The probability
of finding a real effect if it’s there
(that is, of rejecting the null hy-
pothesis when one should). Sta-
tistical power may be low if sam-
ple size is small, if variability (of
the things being measured) is
high, or if the true effect size is
small (and thus difficult to
detect).
e find

auth
limited
ere a

e exp
n.

close
cordi
sitive,

.0001 i
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consist
low 1
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sitive rate.
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ay be unreachable (and the false-negative rate will be ex-
remely high). For exploratory analyses, it is more important
o judge P values cautiously than to try to formally determine
heir true significance level.

ONCLUSION

ultiple testing is a major source of false positives in
he medical literature. Exploratory analyses are particu-
arly prone to this type of error and should be inter-
reted cautiously. When a few moderate size “significant”
values arise in the course of a large number of explor-

tory analyses, these likely reflect chance rather than real
ssociations. Precise adjustment of P values and confi-

ence intervals is often impractical in the context of ex-
loratory research, but can be useful for hypothesis-driven
esearch.
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