Statistically Speaking

The Problem of Multiple Testing
Kristin L. Sainani, PhD

False-positive results that arise as the result of chance are common in the medical literature
[1-3]. By chance, every study sample will have slight imbalances that don’t reflect the whole
population. If researchers look at enough characteristics of a given sample, they are bound
to discover these quirks and conclude (mistakenly) that they have significance for the whole
population. This is the problem of multiple testing—the more tests you run on a sample, the
greater the likelihood of a chance finding. This article will formally describe the problem of
multiple testing and give readers tools for spotting chance findings in the literature.

MULTIPLE TESTING: WHAT IS IT?

Mathematically, the problem of multiple testing can be explained as follows: every statistical
test comes with an inherent false positive, or type I error, rate—which is equal to the
threshold set for statistical significance, generally .05.
Type 1 error. In hypothesis test-  However, this is just the error rate for one test; when
ing, this is a false-positive error.  more than one test is run, the overall type I error rate is
The researcher concludes that an.  much greater than 5%. For example, if one runs 100
effect exists when it does not. independent statistical tests where it is known no effects
exist, the chance of getting at least one false positive (ie, at
least one P value less than .05) is 99.4% (see In-Depth sidebar for how this is calculated), and 5
false positives are expected (because approximately 1 in 20 tests will yield a false positive).
One should not extrapolate from this discussion that 1 in 20 significant findings in the
literature are chance findings. A type 1 error can only occur if the null hypothesis is
true—that is, if the effect being tested is not real. There-
Null hypothesis. The hypothesis fore, if researchers only' eve? tested real effects, there
of no effect—for example, the would be no chance findings in the literature. The prob-
hypothesis fhat 2 variables are  ability that a given significant result is a false positive also
unrelated or that 2 groups dont  depends on the study power (the lower the study power,
differ. A type | error occurs when  the more likely it is a false positive). Thus, it is impossible
the null hypothesis is erroneously  to accurately estimate what proportion of “significant”
rejected. results (P < .05) in the literature are actually chance
findings. On the basis of varying assumptions, research-
ers have estimated this proportion to be anywhere from 1.5% to 96.1%, with approximately
50% being the most likely value [2].

WHAT ARE SOURCES OF MULTIPLE TESTING?

There are many sources of multiple testing (Table 1). Besides the most obvious sources—
comparing multiple groups or examining multiple outcomes— other less obvious sources
include subgroup analyses, variable definitions, repeated measures, and interim analyses.
Some of these sources are not always readily apparent in a published article. For example, if
a data analyst tries 3 different definitions/cut-points for “moderate drinking” in regression
analyses, that person has run 3 statistical tests. However, this data exploration may be
hidden from the reader.

ANATOMY OF A CHANCE FINDING

Some experiments have been conducted purely to illustrate the problem of multiple testing.
In these examples, the researchers knew ahead of time that the null hypothesis was true, but

K.L.S. Division of Epidemiology, Department,
of Health Research and Policy, Stanford Uni-
versity, HRP Redwood Building, Stanford, CA
94305. Address correspondence to: K.L.S.;
e-mail: kcobb@stanford.edu

Disclosure: nothing fo disclose

Disclosure Key can be found on the Table of
Contents and at www.pmrjournal.org

PM&R © 2009 by the American Academy of Physical Medicine and Rehabilitation

1098 1934-1482/09/$36.00
Printed in U.S.A.

Vol. 1, 1098-1103, December 2009
DOI: 10.1016/j.pmrj.2009.10.004


mailto:kcobb@stanford.edu
http://www.pmrjournal.org

PM&R Vol. 1, Iss. 12, 2009 1099

IN-DEPTH: HOW IS THE PROBABILITY OF AT LEAST ONE FALSE POSITIVE
CALCULATED?

If 100 statistical tests are run when: (1) there are no real effects; and (2) these tests are independent, what is the probability
of at least one false positive (that is, one P value under .05)?

For 1 test:

If there are no real effects, the probability of a false positive arising in a given test is .05. So, the probability that a false
positive does not occur is 1 - .05 = .95.

For 100 tests:

If the tests are independent, meaning they are unrelated to each other, then the probability that no false positives occur
in 100 testsis: .95'% = .006. Thus, the probability that at least one false positive does occur is 1 - .006 = .994, or 99.4%.

Note that this calculation requires two key assumptions:

1. The null hypothesis is true for all 100 effects being tested.

2. The effects being tested are completely independent.

In many cases where multiple tests are run in the literature, one or both of these assumptions may not be true.

they conducted multiple statistical tests anyway to demon-
strate how frequently false positives arise.

In a 1980 study in Circulation, researchers randomly as-
signed 1073 heart disease patients to two groups, group 1
and group 2, but they treated the patients exactly the same
[4]. Not surprisingly, they found that survival times were
similar between the 2 groups. However, when they divided
the patients into 18 subgroups based on prognostic factors,
they found that in a particular subgroup (those with 3-vessel
disease and an abnormal left ventricular contraction), group
2 patients had a survival advantage (P < .025). It seems
surprising that a false positive could crop up so easily, but in
fact the probability of this happening was high because the
authors ran 19 statistical comparisons. (It is difficult to cal-
culate the exact probability because the subgroups overlap,
but the probability would be 62% if 19 independent compar-
isons were run.) The lesson: if one divides the data up in
enough different ways, it is easy to find a subgroup with a
chance imbalance in survival.

As another example, take an informal experiment that I
did in an introductory statistics class. I divided the class into
2 groups based on whether the students were born on an odd
or even day and then asked them to provide data on 28
variables about themselves (such as on their likes, dislikes,

Table 1. Sources of multiple testing

and eating habits). When T compared these 28 variables
between the 2 groups, I found 2 significant differences (P =
.02, P = .04). Does this mean that being born on an odd or
even day is really associated with these variables? Of course
not; these are clearly chance findings. When no effects exist,
P values will randomly take on any value from 0 to 1 with
equal probability, meaning that when you run 28 tests a few
will fall in the O to .05 range just by chance. Figure 1 shows
the 28 P values from the tests that I ran—in this context it is
easy to see that the 2 “significant” P values are not very
interesting or impressive.

It's impossible to know for sure whether a particular
“significant” finding in the literature is a chance finding—but
the aforementioned studies illustrate a pattern that should
raise a high level of suspicion. When a large number of
statistical tests are run and just a few findings of modest
significance arise (.01<< P < .05), chance should be consid-
ered as a likely explanation.

For example, consider a paper in the Archives of Internal
Medicine in which the authors examined the relationship
between caffeine consumption and breast cancer [5]. The
authors found no overall association, but they reported a few
significant/near-significant findings (P = .08, P = .02, P =
.02) from subgroup analyses, which they concluded war-

Source

Example

Multiple outcomes

A cohort study looking at the incidence of breast cancer, colon cancer,

and lung cancer

Multiple predictors

An observational study with 40 dietary predictors or a trial with 4

randomization groups

Subgroup analyses

A randomized ftrial that tests the efficacy of an intervention in 20

subgroups based on prognostic factors

Multiple definitions for the exposures and outcomes

An observational study where the data analyst tests multiple different

definitions for *moderate drinking” (eg, 5 drinks per week, 1 drink per
day, 1-2 drinks per day, etc.)

Multiple time points for the outcome (repeated
measures)

Multiple looks at the data during sequential inferim
monitoring

A study where a walking fest is administered at 1 month, 3 months, 6
months, and 1 year

A 2-year randomized trial where the efficacy of the freatment is
evaluated by a Data Safety and Monitoring Board at 6 months, 1 year,

and 18 months
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Figure 1. The distribution of the P values resulting from 28 statistical tests comparing 2 groups of students: those born on odd days
and those born on even days. There is an equal likelihood of getting P values anywhere from 0 to 1, meaning that approximately
5% will come out to be less than .05. Indeed, 2 tests of 28 gave “statistically significant” results (P < .05).

ranted further investigation (specifically, coffee intake was
linked to increased risk in those with benign breast disease,
and caffeine intake was linked to increased risk of estrogen/
progesterone negative tumors and tumors larger than 2 cm).
The authors were appropriately cautious in their conclu-
sions, but I would go one step further and assert that these
findings are most likely the result of chance.

The authors ran 50 tests examining the relationship of
breast cancer with caffeine, coffee, decaffeinated coffee, and
tea intakes overall and in multiple subgroups on the basis of
history of benign breast disease, body mass index (=25,
<25), menopausal status, hormone use (ever/never), hor-
mone receptor status, tumor size (= or >2 cm), lymph node
metastasis (yes/no), and histologic grade (well/moderate/
poor). Figure 2 shows the distribution of the resulting 50 P
values. Four P values were less than .10, which is consistent
with chance. (In addition to the 3 P values mentioned previ-
ously, decaffeinated coffee was linked to protection against
breast cancer in post-
menopausal never hor-
mone users, P = .02; in-
terestingly, the authors
did not comment on this

Effect size: A measure of the
magnitude of an observed ef-
fect—for example, how big the
difference between groups is.

finding.) The effect sizes
are also consistent with
chance: risk ratios were
close to the null value of
1.0 (ranging from 0.67 to

Risk ratio: A measure of relative
risk formed by dividing the risk in
one group by the risk in a refer-
ence group. Values of 1.0 indi-
cate no difference in risk; values
1.79), indicated protec- >1.0 indicate increased risk; and
tion (<1.0) about as often Values < 1.0 indicate decreased

harm (>1.0), and showed risk.

no consistent dose-re-

sponse pattern across increasing levels of consumption. It is
easy to come up with a plausible sounding biological story to
explain why caffeine is important in women with benign
breast disease and for certain types of tumors, but, in fact, the
most likely explanation for the findings is chance alone.

MULTIPLE TESTING: WHAT TO LOOK FOR

In judging whether a given finding in the literature is likely to
be to the result of chance, readers should consider whether
the analyses were hypothesis-driven or exploratory, how
many tests were run, the size of the P values, the pattern of
effect sizes, and whether P values were adjusted for multiple
comparisons (Table 2).
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Figure 2. The distribution of P values from 50 statistical tests examining the relationship between caffeine, coffee, and tea intakes
and breast cancer (5). P values were taken from tests for tfrend only and from the most adjusted model when more than one model
was presented (Tables 2-5 from Ishitani, et al (5)). Four P values fall below .10, which would be expected due to chance.

Are the Analyses Hypothesis Driven or
Hypothesis Generating?

When evaluating the literature, readers should distinguish
between hypothesis-driven analyses and hypothesis-gener-
ating or exploratory an-
alyses. When researchers
specify a priori (before
the study is conducted) a
small number of hypothe-
ses that they are planning
to test, including clear definitions of the predictors and
outcomes, this is hypothesis-driven research. This approach
limits the number of statistical tests run, thus controlling the
overall type I error. In contrast, when researchers test a large
number of hypotheses after the data have been collected—
essentially searching through the data to find associations—
this is hypothesis-generating, or exploratory, research, and
the type I error rate is likely to be high. This is not to say
mining the data in this
manner is wrong or bad.
Often researchers collect
large amounts of data in
the course of a focused

Hypothesis-driven  analyses.
When researchers run a limited
number of prespecified stafistical
fests.

Exploratory analyses. \When re-
searchers run a large number of
unplanned stafistical fesfs look-
ing for patferns in their data.

study, and it would be a waste not to examine these data. But
“statistically significant” results that come out of such an
exploratory analysis should be regarded with a greater level
of scrutiny.

For example, if a randomized trial tests the effect of a drug
versus a placebo in stroke patients, the P values associated
with the primary hypothesis (the difference in recovery be-
tween drug-treated and placebo-treated patients) can be
taken at face value. However, if in that same study, the
researchers explored the associations between a large num-
ber of nutrition variables (that happened to be collected on a
food frequency questionnaire as part of the study) and stroke
recovery, then these results should be clearly identified as
exploratory and interpreted cautiously.

How Many Tests Were Run?

Readers can count the number of tests reported in a paper
and multiply it by .05 to get a rough idea of the number of P
values less than .05 that would be expected to arise by chance
alone (if no effects being tested were real). Of course, the data
presented in a paper usually represent a subset of all the
statistical tests run (particularly for exploratory analyses), so
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Global test. A statistical fest that
compares multiple groups simul-
faneously, generating only one P
value. For example, ANOVA tests
the global null hypothesis that
several groups’ means are equal.
If the null hypothesis is rejected,
this indicafes that at least one
mean differs.

keep in mind that the
number of tests run may
be much larger than the
number of tests reported.

There are a number of
statistical approaches avail-
able that can reduce the
number of tests being run.
Global tests such as analy-

but only a few results
achieve moderate statistical
significance, one may sus-
pect that low statistical
power is a factor rather than
chance. On the other hand,
if the effect sizes show no
consistent pattern—as in
the caffeine/breast cancer

Statistical power. The probability
of finding a real effect if it’s there
(that is, of rejecting the null hy-
pothesis when one should). Sta-
fistical power may be low if sam-
ple size is small, if variability (of
the things being measured) is
high, or if the frue effect size is
small (and thus difficult to

sis of variance (ANOVA)
and repeated-measures ANOVA compare multiple groups or
multiple time points simultaneously, thus generating only one P
value. For example, rather than running 3 ¢ tests (and thus
inflating the type I error) to compare the means in 3 groups, one
can instead conduct a single ANOVA analysis that compares all
three means at once. Statis-
ticians also create compos-
ite outcomes to reduce the
number of outcomes being
tested.

Composite outcome. \Where
multiple endpoinfs are combined
into a single outcome measure.

How Significant Is the P Value?

The strength of the evidence against the null hypothesis
increases with smaller P values. Therefore, a P value of <.001
is less likely to be a chance finding than a P value of <.05. In
one paper, researchers estimated—based on certain assump-
tions about the literature—that when a significance threshold
of P < .05 is used, about 1 in 2 significant findings in the
literature will be the result of chance, but when a threshold of
P < .001 is used, only 1 in 56 significant findings will be the
result of chance [2].

What Is the Pattern of Effect Sizes?

P values do not tell the whole story, and readers should always
also consider effect sizes. If a particular association (eg, caffeine
and breast cancer) has been evaluated across multiple different
tests, the pattern of the resulting effect sizes can be informative.
Real effects may be missed if a study has low statistical power.
Therefore, if there is a consistent pattern of effect sizes, for
example, if all the risk ratios are in the direction of harm (>1.0),

study mentioned previ- detech).

ously—then chance may be
a more likely explanation.

Has the P Value Been Adjusted for
Multiple Comparisons?

Statisticians have devised ways to “adjust” P values or confidence
intervals to account for the number of tests run. The basic idea is
to preserve the overall type I error rate at .05 by lowering the
threshold for statistical significance (to lower than <.05) or
widening the confidence interval. For example, the simplest
approach is the Bonferroni correction: When k tests are run,
only P values under .05/k are deemed significant (eg, if 5 tests
are run, only P values under .01 are reported as significant).
Although easy to understand and conduct, the Bonferroni cor-
rection is overly conservative—it represents a “worst-case” sce-
nario where all the tests being conducted are completely inde-
pendent (which is usually not the case). Thus, many less
conservative (but more mathematically intensive) methods have
been developed. Applying these requires statistical software
and/or consultation with a statistician.

Formal corrections for multiple comparisons are most
often used in the context of hypothesis-driven research. For
example, if the authors plan to look at multiple outcomes,
look at a limited number of planned subgroups, or engage in
interim analyses, they may build in a correction for these
multiple comparisons. For exploratory analyses, formal ad-
justment of P values (and confidence intervals) is usually
impractical. In these contexts, it is difficult to precisely quan-
tify the total number of tests run and their interrelatedness;
and, because of the large number of tests run, the adjusted
threshold for statistical significance may be so small that it

Table 2. Summary of factors that may be indicative of chance findings

1. Analyses are exploratory.

The authors have mined the data for associations rather than testing

a limited number of a priori hypotheses.

2. Many tests have been performed, but only
a few P values are “significant.”

3. The "significant” P values are modest in size.

If there are no associations present, .05*k significant P values (P < .05)
are expected to arise just by chance, where k is the number of tests
run.

The closer a P value is to .05, the more likely it is a chance finding.

According to one estimate (2), about 1in 2 P values <.05 is a false
positive, 1in 6 P values <.01 is a false positive, and 1 in 56 P values
<.0001 is a false positive.

4. The pattern of effect sizes is inconsistent.

If the same association has been evaluated in multiple ways, an

inconsistent pattern of effect sizes (eg. risk ratios both above and
below 1) is indicative of chance.

5. The P values are not adjusted for multiple
comparisons

Adjustment for multiple comparisons can help control the study-wide
false-positive rate.
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may be unreachable (and the false-negative rate will be ex-
tremely high). For exploratory analyses, it is more important
to judge P values cautiously than to try to formally determine
their true significance level.

CONCLUSION

Multiple testing is a major source of false positives in
the medical literature. Exploratory analyses are particu-
larly prone to this type of error and should be inter-
preted cautiously. When a few moderate size “significant”
P values arise in the course of a large number of explor-
atory analyses, these likely reflect chance rather than real
associations. Precise adjustment of P values and confi-
dence intervals is often impractical in the context of ex-

ploratory research, but can be useful for hypothesis-driven
research.
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